Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(1): 44, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680630

RESUMO

Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.


Assuntos
Genômica , Plantas Daninhas , Plantas Daninhas/genética , Fenótipo , Adaptação Fisiológica
2.
Front Plant Sci ; 13: 1020621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452088

RESUMO

Invasive plants threaten biodiversity and cause huge economic losses. It is thought that global change factors (GCFs) associated with climate change (including shifts in temperature, precipitation, nitrogen, and atmospheric CO2) will amplify their impacts. However, only few studies assessed mixed factors on plant invasion. We collated the literature on plant responses to GCFs to explore independent, combined, and interactive effects on performance and competitiveness of native and invasive plants. From 176 plant species, our results showed that: (1) when native and invasive plants are affected by both independent and multiple GCFs, there is an overall positive effect on plant performance, but a negative effect on plant competitiveness; (2) under increased precipitation or in combination with temperature, most invasive plants gain advantages over natives; and (3) interactions between GCFs on plant performance and competitiveness were mostly synergistic or antagonistic. Our results indicate that native and invasive plants may be affected by independent or combined GCFs, and invasive plants likely gain advantages over native plants. The interactive effects of factors on plants were non-additive, but the advantages of invasive plants may not increase indefinitely. Our findings show that inferring the impacts of climate change on plant invasion from factors individually could be misleading. More mixed factor studies are needed to predict plant invasions under global change.

3.
Front Plant Sci ; 13: 851099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401616

RESUMO

Nitrogen (N) is one of the essential nutrients for plant growth. Appropriate application of N can improve the N use efficiency (NUE) and significantly promote plants' growth. However, under N toxic conditions, the relationship between the growth and antioxidant system of invasive plants under different N forms and competitive treatments is not fully understood. Therefore, in this study, the performance of invasive species Wedelia trilobata and its native species Wedelia chinensis was evaluated under two sets of N forms and ratios, namely, NH4 +-N(AN)/NO3 --N(NN) = 2:1 and NH4 +-N(AN)/NO3 --N(NN) = 1:2 along with two intraspecific and interspecific competitions under without N and high N level of 15 g N⋅m-2 year-1, respectively. Data regarding the growth indices, antioxidant enzyme activities, including peroxidase (POD) and catalase (CAT), malondialdehyde (MDA), and proline contents were determined. Results showed that for competitive treatments, growth status was better for interspecific competition than intraspecific competition. The plant biomass of W. trilobata was significantly higher than that of W. chinensis. N significantly promoted the plants' growth in terms of leaf area and biomass yield, and the antioxidant enzyme activities were significantly increased under a high N treatment than that of the control. Among N forms/ratios, ammonium N (AN)/nitrate N (NN) = 2:1 significantly enhanced the enzyme activity, particularly in W. trilobata. Furthermore, for intraspecific competition, MDA contents of W. trilobata were significantly decreased compared to that of W. chinensis. In conclusion, our results showed that W. trilobata adapted well under competitive conditions through better growth and antioxidant defense system.

4.
J Vet Res ; 65(2): 155-160, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34250299

RESUMO

INTRODUCTION: It is very important to monitor the infection of Mycoplasma ovipneumoniae as a potential threat to the sheep industry. Southern Xinjiang is a major sheep breeding base in China, however, there is no relevant information concerning the infection of the region's ovine stock with this bacteria at present. This study aimed to address this knowledge gap. MATERIAL AND METHODS: A total of 824 nasal swabs and the lungs of six sheep that died of pneumonia were collected in four regions between 2018 and 2020. Primers specific for M. ovipneumoniae and universal ones for the genus were used for PCR. Sequencing was undertaken of 159 universal primer-positive samples (153 nasal swabs and 6 lungs) and of 84 specific primer-positive samples (80 nasal swabs, 20 per region; and 4 lungs, 1 per region). The lungs were also sampled for the isolation of M. ovipneumoniae. A phylogenetic tree based on partial sequences of the Mycoplasma 16S rRNA gene was built. RESULTS: The overall nasal swab positive rate for M. ovipneumoniae was 40.78%; the rate of animals older than 12 months was significantly different to those of younger sheep (< 3 months, 53.39%; 3 - 12 months, 46.01%; >12 months, 31.76%). Four strains of M. ovipneumoniae were isolated from six lungs. Phylogenetic analysis indicated their origin outside southern Xinjiang. Two other species were also detected: M. arginine and M. conjunctivae. CONCLUSION: Our survey indicated that a high level of M. ovipneumoniae asymptomatic colonisation in sheep, especially in lambs, affects southern Xinjiang and also confirmed the existence of M. conjunctivae and M. arginine. Our results showed that the health of sheep in southern Xinjiang is facing a great threat, and relevant prevention and control measures should be strengthened.

5.
Endocrinology ; 150(1): 324-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18772232

RESUMO

Progesterone (P4) antagonizes estradiol (E2) in synaptic remodeling in the hippocampus during the rat estrous cycle. To further understand how P4 modulates synaptic plasticity, we used entorhinal cortex lesions, which induce E2-dependent neurite sprouting in the hippocampus. In young ovariectomized rats, the E2-dependent entorhinal cortex lesion-induced sprouting was attenuated by concurrent treatment with P4 and E2. Microglial activation also showed the E2-P4 antagonism. These findings extend reports on the estrous cycle synaptic remodeling without lesions by showing the P4-E2 antagonism during simultaneous treatment with both E2 and P4. Glial mechanisms were analyzed with the wounding-in-a-dish model of cocultured glia and embryonic d-18 cortical neurons from rat. In cocultures of mixed glia (astrocytes plus 30% microglia), P4 antagonized the E2-dependent neurite outgrowth (number and length) and neuron viability in the presence of E2, as observed in vivo. However, removal of microglia (astrocyte-neuron coculture) abolished the antagonism of E2 by P4 on neuron sprouting. The P4 receptor antagonists ORG-31710 and RU-486 blocked the antagonism of P4 on E2-dependent sprouting. These findings suggest a new role for microglia in P4 antagonism of E2 in neuronal plasticity and show its dependence on progesterone receptors. These findings are also relevant to the inclusion of progestins in hormone therapy, which is controversial in relation to cognitive declines during aging and in Alzheimer's disease.


Assuntos
Estradiol/farmacologia , Microglia/fisiologia , Neuritos/fisiologia , Progesterona/farmacologia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Antagonistas de Estrogênios/farmacologia , Feminino , Microglia/citologia , Microglia/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ovariectomia , Ratos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...